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Abstract 

The slip line theory is applied to the problem of an axisymmetric retaining wall interacting with 
unsaturated soil. The slip line governing equations express the limiting equilibrium condition of a 
Mohr-Coulomb soil. A linear variation of the contribution of suction to the effective stress with depth 
is assumed. Both active and passive failure modes of a rigid wall are considered. The plastic critical 
depth for unsaturated soil failing in an active failure mode is discussed. Assuming the circumferential 
stress to be the minor principal stress causes higher passive lateral earth pressure. It is shown that 
adopting the effective stress concept enables the influence of suction in unsaturated soils to be 
considered in a simple way. The influence of the contribution of suction to the effective stress is found 
to be significant. 
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1. INTRODUCTION 
Retaining walls are used by engineers to resist lateral earth pressure. They often interact with 
compacted and natural soils above the ground water table. These soils are mostly unsaturated meaning 
they contain a significant amount of both water and air. 

Retaining wall-unsaturated soil interactions have been investigated by some researchers in 
experiments and theories (Fredlund 1979, Pufahl, Fredlund et al. 1983, Vo 2014, Vo, Taiebat et al. 
2016). It has been shown that unsaturated soils are stronger and stiffer than saturated and dry soils. 
They are also more brittle and prone to shear band formation at a low confining pressure (Vo and 
Russell 2017). 

The slip line theory underpins many design charts in foundation engineering. The effective stress 
concept for unsaturated soils (Bishop 1959) when combined with the slip line theory has been shown 
to capture major features of retaining wall-unsaturated soil interactions. Previous slip line analyses of 
retaining wall-unsaturated soil interaction are limited to a plane strain condition. 

Axisymmetric lateral earth pressures are mobilised around a circular excavation and at sites where 
soil interacts with massive cylindrical structures e.g. circular footing, grain silo, water storage tank, 
coffer dam, etc. There have been some research applying the slip line theory to axisymmetric 
retaining walls interacting with dry soils (Cheng, Hu et al. 2007, Liu and Wang 2008, Liu, Wang et al. 
2009, Keshavarz and Ebrahimi 2017). The slip line theory has never been applied to axisymmetric 
retaining walls interacting with unsaturated soils. This paper presents the first slip line analysis of 
axisymmetric retaining wall interacting with unsaturated soil. 

This paper also presents improvements to previous researches on axisymmetric retaining walls 
interacting with dry soils. 

Liu and Wang (2008) analysed an axisymmetric active earth pressure problem but they did not 
account for the presence of a plastic critical depth that occurs when the total earth pressure at the soil-
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wall interface becomes tensile. When this condition develops, soil separates from the rigid wall and 
changes the boundary conditions. The development of a plastic critical depth has been analysed by 
some authors for dry soils in a plane strain condition (Peng and Chen 2013, Keshavarz 2016). This 
paper will consider it for unsaturated soils in axial symmetry. 

Keshavarz and Ebrahimi (2017) analysed an axisymmetric passive earth pressure problem by 
assuming the circumferential stress to be equal to the minor principal stress. This assumption is the 
Harr-von Karman hypothesis applied to a passive earth pressure problem (Houlsby 1982, Bolton and 
Lau 1993). This assumption was necessarily adopted for a Tresca soil obeying the associated flow 
rule (Shield 1952, Houlsby and Wroth 1982) but it is not needed for a Mohr-Coulomb soil. Many 
authors analysed a Mohr-Coulomb soil in axisymmetric stress-strain regimes where the magnitude of 
the circumferential stress is neither a major nor minor principal stress (Cox, Eason et al. 1961, 
Drescher 1986, Hill and Cox 2000). 

The Harr-von Karman hypothesis for an active earth pressure problem states that the circumferential 
stress is equal to the major principal stress. Much experimental and numerical evidence shows that 
adopting this hypothesis is not conservative for a Mohr-Coulomb soil in an active failure mode 
(Cheng, Au et al. 2008, Tobar and Meguid 2011, Kim, Lee et al. 2013, Cho, Hyunsung et al. 2015), 
since it underestimates the lateral earth pressure at failure. 

There is no direct measurement of the magnitude of the circumferential stress for a Mohr-Coulomb 
soil (Keshavarz and Ebrahimi 2017). Experimental evidence for the Harr-von Karman hypothesis in a 
passive failure mode has never been presented. Hill (1950) considered this hypothesis to be overly 
restrictive. Hansen, Christensen et al. (1968) expressed reservations about the hypothesis being 
applied to the axisymmetric bearing capacity problem on a Mohr-Coulomb soil. 

In this paper, the authors present analyses to show that the Harr-von Karman hypothesis is not 
conservative in a passive failure mode. It is shown that adopting the Harr-von Karman hypothesis in a 
passive failure mode results in higher lateral earth pressure than without adopting it. 

2. GOVERNING EQUATIONS 

2.1. Effective stress and failure criterion 
It is assumed that soil shear strength is governed by the Mohr-Coulomb failure criterion: 

𝜏 = 𝑐$ + 𝜎'$ tan𝜑$ (1) 

in which 𝑐$ is the soil cohesion and 𝜑$ is the soil friction angle obtained from axisymmetric soil tests 
e.g. triaxial test. 𝜎'$  is mean effective stress and for an unsaturated soil is defined as (Bishop 1959): 

𝜎'$ = 𝜎' − 𝑢. + 𝜒(𝑢. − 𝑢1) (2) 

where 𝜎' is mean total stress, 𝑢. is pore air pressure, 𝑢1 is pore water pressure and 𝜒 is effective 
stress parameter. When pore air pressure is equal to atmospheric pressure and is taken as the pressure 
datum, Eq. 2 can be written as: 

𝜎'$ = 𝜎' + 𝜒𝑠   (3) 

where 𝑠 = 𝑢. − 𝑢1 is soil suction.	𝜒𝑠 is the contribution of suction to the effective stress. It is 
assumed that 𝜑$ is constant in this paper. 

2.2. Cohesion and contribution of suction to the effective stress 
Unsaturated frictional soils are treated as non-homogeneous soils in this paper. The non-homogeneity 
may occur in the soil cohesion (𝑐$) and the contribution of suction to the effective stress (𝜒𝑠). For 
simplicity, it is assumed that 𝑐$ is constant and 𝜒𝑠 varies linearly with depth by the functions: 
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𝜒𝑠 = (𝜒𝑠)5 + 𝑘78𝑧 (4) 

where (𝜒𝑠)5 is contribution of suction to the effective stress at 𝑧 = 0 and 𝑘78 is a constant. Non-
homogeneity in the soil cohesion has been treated by several authors (Davis and Booker 1973, Tani 
and Craig 1995, Hu and Randolph 1998). This paper focuses on the non-homogeneity occurring in the 
contribution of suction to the effective stress.  

2.3. Governing equations of the stress slip lines 
With reference to the coordinates system shown in Fig. 1, the static equilibrium equations are 
expressed as: 

;<==
;>

+ ;<=?
;@

+ <==A<BB
>

= 0  (5) 

;<=?
;>
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>
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where 𝜎EE, 𝜎GG are normal stresses in the 𝑧 and 𝑟 directions, respectively, 𝜎II is circumferential stress, 
𝜎EG is shear stress and 𝛾D is soil unit weight. At the onset of failure, the stress components 𝜎EE, 𝜎GG, 𝜎EG 
satisfy: 

𝜎EE = [(1 + sin𝜑$ cos 2𝜓)𝜎'$ − 𝑐$ cot 𝜑$] − 𝜒𝑠 (7) 

𝜎GG = [(1 − sin𝜑$ cos 2𝜓)𝜎'$ − 𝑐$ cot 𝜑$] − 𝜒𝑠 (8) 

𝜎EG = 𝜎'$ sin𝜑$ sin2𝜓 (9) 

where 𝜓 is angle between the vertical axis and the major principal stress direction. The 
circumferential stress 𝜎II is assumed to be intermediate between the major and minor principal 
stresses:  

𝜎II = 𝑘II[(1 ± sin𝜑$)𝜎'$ − 𝑐$ cot 𝜑$] − 𝜒𝑠 (10) 

where 𝑘II is a constant, the (+) sign in Eq. 10 applies to an active failure mode and the (-) sign in Eq. 
10 applies to a passive failure mode. In this paper, the constant 𝑘II will be varied to investigate the 
influence of the magnitude of the circumferential stress. 𝑘II is restricted theoretically as 
TUA8VWXYZ<[Y A\Y ]^D XY

(U_8VWXY)<[Y A\Y ]^DXY
≤ 𝑘II ≤ 1 in an active failure mode and 1 ≤ 𝑘II ≤

TU_8VWXYZ<[Y A\Y ]^DXY

(UA8VWXY)<[Y A\Y ]^DXY
. The 

magnitude of 𝑘II will be discussed later in section 4.2.  

The stress components (Eqs. 7-10) are substituted into Eqs. 5-6 and solved to obtain two families of 
stress slip lines (𝜉, 𝜂): 

〈𝜉〉 ≡ f
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𝐵 = sin(𝜓 − 𝜇) j𝛾D +
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3. THE AXISYMMETRIC RETAINING WALL PROBLEM 

3.1. Problem definition 
A typical axisymmetric retaining wall interacting with unsaturated frictional soil is shown in Fig. 1. 
The wall OA is at a distance 𝑟5 from the axis of symmetry. An active and a passive failure mode 
corresponds to the soil below OB reaching a minimal and a maximal stress state, respectively 
(Sokolovski 1954). The soil-wall interface friction angle is negative in an active failure and positive in 
a passive failure mode. The wall OA is inclined at angle 𝛼 from the vertical (𝛼 is negative clockwise 
and positive anticlockwise). 

Eqs. 11-14 show that as 𝑟5 → ∞, the axisymmetric retaining wall problem becomes the corresponding 
plane strain problem (Vo and Russell 2017). Eqs. 11-14 also show that design charts for the 
axisymmetric retaining wall problem must contain 𝑟5 (Liu and Wang 2008, Keshavarz and Ebrahimi 
2017). 

3.2. Boundary conditions 
Boundary conditions of this problem include the soil surface OB, point O and the retaining wall-soil 
interface OA (Fig. 1). At the soil surface OB, 𝜓 = 0, 𝜎'$ =

y_\Y ]^DXY_(pq)z
U_8VWXY

, 𝑧 = 0, 𝑟 = 𝑟5 + [0, OB}}}}] 

in an active failure mode and 𝜓 = t
r
, 𝜎'$ =

y_\Y ]^D XY_(pq)z
UA8VWXY

, 𝑧 = 0, 𝑟 = 𝑟5 + [0, OB}}}}] in a passive 

failure mode where 𝑞 is the surcharge applied on OB. At the soil-wall interface OA,	𝜓 = ��
Y

r
− �Y

r
� +

𝛼, @
>zA>

= tan �t
r
− 𝛼� in an active failure mode and 𝜓 = t

r
− ��

Y

r
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r
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r
− 𝛼� in a 

passive failure mode where	Δ$ is defined by 	Δ$ = sinAU �8VW �
Y

8VWXY
� and 𝛼 is the wall inclination angle. 

Point O is treated as a slip line in the limit so 𝜓, 𝜎$ transit from their values on OB to their values on  

OA.  

Figure 1. Coordinates system and problem geometry. 
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3.3. Solution procedures  
The governing equations and boundary conditions were solved using a finite difference procedure 
similar to Sokolovski (1954). The numerical procedures were verified by reproducing the results of 
Liu and Wang (2008) (an active failure mode) and Keshavarz and Ebrahimi (2017) (a passive failure 
mode). Using only 100 characteristic pairs, exact agreements are achieved as shown in Figs. 2. In Fig. 
2a, when the total normal stress on rigid retaining wall becomes tensile, the soil separates from the 
rigid wall and changes the boundary conditions. This issue will be investigated in the next section. In 
Fig. 2b, 𝑐1$  denotes the cohesion coefficient at the soil-wall interface. 

 

(a) 

 

(b) 

Figure 2. Validation against the results of (a) Liu and Wang (2008) for an active failure mode 
and (b) Keshavarz and Ebrahimi (2017) for a passive failure mode. 

4. RESULTS 

4.1. Plastic critical depth in an active failure mode 
When (𝜎WW)�_G1 < 0, soil separates from the rigid wall and changes the boundary conditions. The 
greatest depth where this occurs is denoted 𝑧]G and can be referred to as the plastic critical depth. In 
this paper, the following assumptions are made:  

• It is assumed that above the plastic critical depth, the soil is in an elastic state. The new 
surface boundary is OcrBcr (Fig. 3). The new surcharge will be 𝑞]G = 𝛾D𝑧]G + 𝑞 where 𝛾D𝑧]G 
represents the weight of the elastic soil. For simplicity, this new surcharge is assumed to be 
uniformly distributed on OcrBcr. This approximation is most correct when the retaining wall is 
near vertical (i.e. 𝛼 is small). 

• It is assumed that above the plastic critical depth, the contribution of suction to the effective 
stress is constant at 𝜒𝑠 = (𝜒𝑠)5 and below the plastic critical depth 𝜒𝑠 = (𝜒𝑠)5 + 𝑘78(𝑧 −
𝑧]G). 

The plastic critical depth 𝑧]G can be found by computing the total normal stress on the wall at point O 
and setting it to zero. How to do this is described below. 

The effective mean stress on the retaining wall at point O is denoted (𝜎'$ )�_G1 and is found to be: 

(𝜎'$ )�_G1 = jy_\
Y ]^DXY_(pq)z
U_8VWXY
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The total normal stress on the retaining wall at point O is denoted (𝜎WW)�_G1 and is found to be: 

(𝜎WW)�=� = [1 − sin𝜑$ cos(Δ$ − 𝛿$)] jy_\
Y ]^DXY_(pq)z
U_8VWXY

n 𝑒r D.WX
Y��

Y

m A
�Y

m _�� − 𝑐$ cot 𝜑$ − (𝜒𝑠)5    (16) 

Requiring (𝜎WW)�_G1 = 0 results in: 

𝑞]G = [𝑐$ cot 𝜑$ + (𝜒𝑠)5] �
TU_8VWXYZ�

�m����Y��
Y
m �

�Y
m ���

UA8VWXY ]^8(�YA�Y)
− 1� (17) 

In Eq. 17, 𝑞]G is the minimum surcharge for (𝜎WW)�_G1 ≥ 0. Consequently, 𝑧]G is found to be: 

𝑧]G =

�\Y ]^DXY_(pq)z�

⎣
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ª�
  (18) 

Eq. 18 implies higher surcharge, higher 𝑐$ cot 𝜑$, or higher (𝜒𝑠)5will result in higher plastic critical 
depth 𝑧]G. 

Table 1 lists parameters of analyses 1-2. Parameters of analysis 1 are based on Liu and Wang (2008). 
Analysis 1 was also used in the numerical verification process (section 3.3, Fig. 2a). The results of 
analyses 1-2 are plotted in Fig. 4.  

It is shown that the existence of tensile total normal stress at the soil-wall interface in analysis 1 has 
been eliminated by adopting 𝑞]G = 69.28, 83.02, 92.18 kPa in analysis 2 (calculated using Eq. 17). 
Assuming the original surcharge 𝑞 = 20 kPa in analysis 1 is still being applied, the net surcharges 
(i.e. the weight of the elastic soil) in analysis 2 are 𝑞]G − 𝑞 = 46.28, 63.02, 72.18 kPa. The plastic 
critical depths corresponding to these surcharges are 𝑧]G = 2.464,3.151,3.609 m, respectively. 

Fig. 4 shows that when the plastic critical depths are accounted for, the total normal earth pressures on 
the retaining wall are always compressive. Fig. 4 also shows that below the plastic critical depths, the 
total normal earth pressures increase slightly. 

 

Figure 3. Occurrence of plastic critical depth (zcr) in an active failure mode. 
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Table 1. Parameters adopted in analyses 1-7. 

parameters unit analysis  

1 

analysis  

2 

analysis  

3 

analysis  

4 

analysis  

5 

analysis  

6 
(active 
mode) 

analysis  

7 
(passive 
mode) 

𝜑$ ° 30 30 20 20 25 25 25 

𝛿$ ° 0,15,30 0,15,30 10 10 12.5 12.5 12.5 

𝑐$ kPa 20 20 15 15 17.5 17.5 17.5 

(𝜒𝑠)5 kPa 0 0 0 0 0 20,40 20,40 

𝑘78 kPa/m 0 0 0 0 0 -1 -1 

𝑞 kPa 20 20 25 25 22.5 22.5 22.5 

𝑞]G kPa N/A 69.28,83.02,92.18 N/A N/A N/A N/A N/A 

𝛾D kN/m3 20 20 20 20 20 20 20 

𝛼 ° 0 0 0 0 0 0 0 

𝑟5 m 20 20 20 20 20 20 20 

𝑘II n. a. 1 1 1 1.922,3.845 1 1 1 

𝐻 m 25 25 10 10 17.5 17.5 17.5 

 

 

Figure 4. Lateral earth pressures on a retaining wall in an active failure mode when plastic 
critical depths are accounted for. 
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4.2. Influence of the relative magnitude of the circumferential stress in a passive failure 
mode 

The limiting equilibrium equations (Eqs. 5-10) are determinate if 𝑘II is known. The Harr-von 
Karman hypothesis (Harr and von Kármán 1909) applied for a passive earth pressure problem states 
that the circumferential stress is equal to the minor principal stress. This assumption was adopted 
previously to calculate the bearing capacity of a circular footing and the penetration resistance of a 
conical indenter. More recently, it is used to calculate the passive lateral earth pressure on an 
axisymmetric retaining wall (Keshavarz and Ebrahimi 2017).  

In a passive failure mode, the soil is displaced outwards by the wall, thus inducing a tensile 
circumferential strain (Houlsby and Wroth 1982). As most soils have little shear strength when in 
tension, the circumferential stress should be closer to the minor principal stress than the major 
principal stress. 

There is no direct measurement of the magnitude of the circumferential principal stress (Keshavarz 
and Ebrahimi 2017). Many researchers assumed that it is equal to the minor principal stress for a 
Mohr-Coulomb soil (Bolton and Lau 1993, Cassidy and Houlsby 2002, Martin 2004). Some 
researchers constrained it to be closer to the minor principal stress than the major principal stress 
(Kumar and Khatri 2011, Chakraborty and Kumar 2014, Bhattacharya and Kumar 2016). 

Table 1 lists parameters of analyses 3-4. Parameters of analysis 3 are based on Keshavarz and 
Ebrahimi (2017). Analysis 4 is different from analysis 3 in the relative magnitude of the 
circumferential stress. In analysis 3, 𝑘II = 1 compared to in analysis 4, 𝑘II = 1.922, 3.845. It is 
noted that 𝑘II = 1 corresponds to the assumption that the circumferential stress is equal to the minor 
principal stress whereas 𝑘II = 3.845 = U_8VW r5°

UA8VW r5°
 is an upper bound of 𝑘II, obtained when 𝑐$ = 0 

kPa. The 𝑘II values adopted in analysis 4 were deliberately high (although they are theoretically 
permissible) to demonstrate the impact of Harr-von Karman hypothesis. The results of analyses 3-4 
are plotted in Fig. 5. 

 

Figure 5. Influence of the magnitude of the circumferential stress in a passive failure mode. 

Fig. 5 shows that assuming the circumferential stress equal to the minor principal stress i.e. 𝑘II = 1 
results in significantly higher lateral earth pressure on retaining wall. This means that given certain 
soil strength parameters, a higher passive thrust is needed to cause failure. Clearly, the 𝑘II = 1 
assumption leads to non-conservative results. 
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4.3.Influence of the contribution of suction to the effective stress 
Table 1 lists parameters of analyses 5-7. The results of analyses 5-7 are plotted in Figs. 6. In analysis 
5, (𝜒𝑠)5 = 0	kPa, 𝑘78 = 0	kPa/m to simulate a dry condition while in analyses 6-7, (𝜒𝑠)5 =
20,40	kPa, 𝑘78 = −1	kPa/m to simulate unsaturated conditions. Analysis 6 assumes an active failure 
mode and analysis 7 assumes a passive failure mode. 

Figs. 6 show that the impacts of the contribution of suction to effective stress are significant in both 
active and passive failure modes. Suction in unsaturated soil increases the effective normal pressures 
at the soil-wall interface. The occurrence of plastic critical depths in an active failure mode causes 
very different lateral earth pressure profiles to be mobilised at limiting condition (Fig. 6a).  

 

(a) 

 

(b) 

Figure 6. Influence of the contribution of suction to the effective stress on the distribution of 
effective lateral earth pressure on retaining wall for (a) an active failure mode and (b) a passive 

failure mode. 

5. CONCLUSION 
The slip line theory has been applied to an axisymmetric retaining wall-unsaturated soil interaction 
problem. Assuming the wall reaching an active failure mode and a passive failure mode, the 
governing equations are presented and solved iteratively using the finite difference method. An 
expression is presented for estimating the plastic critical depth in an active failure mode in unsaturated 
soils. It is also shown that assuming the circumferential stress to be equal to the minor principal stress 
in a passive failure mode is not conservative. It is shown that adopting the effective stress concept 
enables the influence of suction in unsaturated soils to be considered in a simple way. The influence 
of the contribution of suction to the effective stress is found to be significant. 
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