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Abstract 

In this paper, a new type of elements called radiation discs is introduced to model dynamic pile-soil-pile 
interaction and to deal with the radiation conditions at infinite domains. The pile group system can be 
modelled using beam-column elements, while the radiation discs are defined at the nodal points of the 
elements to model the pile-soil-pile interaction. A Boussinesq-type loading distribution is proposed to 
act on the discs to achieve the proper mode of deformation at the cross sections of piles. Using 
radiation discs, the discretisation of the domain is only required along the length of piles, while the 
discretisation of soil medium, top free surface boundary, and cross sections of piles are avoided. 
Numerical examples are presented to demonstrate the application of the method and to investigate the 
influence of excitation frequency and pile spacing on dynamic response of pile groups. 
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1. INTRODUCTION  

The description of pile-soil-pile interaction under dynamic loading conditions is a key area of research 
in modern geotechnical engineering. This is due to the wide applications of pile groups in structures 
exposed to dynamic loads, including bridges, machinery foundations, and offshore platforms. A variety 
of numerical and analytical techniques has been developed to investigate the dynamics of piles and pile 
groups. Among the notable contributions have included the works of Wolf and Von Arx (1978), 
Nogami (1979), Poulos and Davis (1980), Kaynia (1982), Sheta and Novak (1982), Senm et al. (1985); 
Pak and Jennings (1987), Rajapakse and Shah (1989); Mamoon et al. (1990); Gazetas et al. (1991), EI-
Marsafawi et al. (1992), Liu and Novak (1994), Randolph (2003), Barros (2003), Noorzad et al. (2005), 
Cairo et al. (2005), Padrón et al. (2007), Shahmohamadi et al. (2011), Shahmohamadi et al. (2013), and 
Gharahi et al. (2014). Most of the methods used for a direct and complete analysis of pile groups 
involve either the discretisation of the whole domain, e.g. Finite Element and Finite Difference 
Methods, or the boundary of the domain including top free surface and pile-soil interfaces, i.e. 
Boundary Element Method. These numerical methods generally requires significant computational 
effort for three-dimensional analysis of pile groups under dynamic loads, in particular when the pile 
group consists of a large number of piles.  

This paper presents a novel numerical method for dynamics of piles and pile groups. The theoretical 
approach adopted is an extension of the method proposed by Muki and Sternberg (1969, 1970) to 
include the inertia as well as anisotropy effects. In the hybrid method, the piles are modelled using finite 
elements, while massless rigid radiation elements are defined at the nodal points of the elements to 
model the wave propagation in the surrounding medium. The elastodynamic response of the radiation 
elements buried at different depths in an anisotropic half-space is derived in a transform domain using a 
set of complete potential functions proposed by Noorzad et al. (2003) and Eskandari-Ghadi (2005). A 
Boussinesq-type distribution is defined to act on the radiation elements to attain the proper mode of 
deformation along the cross-sections of piles in the soil medium system. In the method, the 
discretisation is only required along the length of piles, while discretisation of the surrounding medium, 
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Figure 1. Modelling of dynamic pile-soil-pile interaction: soil-pile group system (left), radiation 
elements (middle), finite elements (right). 

 
 
top free surface boundary, and along the cross sections of piles are avoided. Numerical examples are 
presented to demonstrate the application of the method and to investigate the influence of excitation 
frequency and pile spacing on dynamic response of pile groups. 

2. MODELLING OF DYNAMIC PILE-SOIL-PILE INTERACTION 

In this numerical method, the pile group system is modelled using beam-column elements, while 
massless rigid radiation discs are defined at the nodal points of the elements to model the pile-soil-pile 
interaction, see Figure 1. A Boussinesq-type distribution is defined to act on the radiation discs to attain 
the rigid mode of deformation along the cross-sections of piles. In a cylindrical coordinate system 

, this distribution can be expressed as 

 

 (1) 

where  depends on direction and magnitude of external forces and  is the radius of the 
radiation disc. By using this equation, the discretisation along the cross sections of piles is avoided in 
the proposed scheme. The compatibility condition between the two systems in z-direction is satisfied by 
considering the same displacement field for the nodal points of the pile elements and the radiation discs. 
Hence, the dynamic stiffness matrix of the pile-soil-pile system  is derived from  

  (2) 

where  and  are the piles and the radiation discs stiffness matrices, respectively. The 
dynamic stiffness matrix of the radiation discs is obtained by inverting the flexibility matrix. This matrix 
is derived through applying unit dynamic load at each radiation disc, and determining the response of all 
the discs in the group. The method is general and can readily be extended to simulate any arbitrary pile 
group configurations and pile-soil-pile interaction problems with more complex loading and boundary 
conditions. 

3. DYNAMIC RESPONSE OF RADIATION ELEMENTS 

The elastodynamic response of the radiation discs buried at different depths in a transversely isotropic 
half-space is derived in a transform domain using a set of complete potential functions (Noorzad et al., 
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2003; Eskandari-Ghadi, 2005). For a transversely isotropic half-space, the displacement functions in the 
frequency domain can be expressed in terms of two scalar potential functions  and as 

 

 

 (3) 

where , , and  are displacement components in , , and  directions in the cylindrical 
coordinate system, respectively, , , 

, , , , 

, , , , 

,  , ,  is the circular frequency,  and 

 are Young’s moduli in the plane of isotropy and in the direction normal to it,  and  are in-

plane and normal Poisson’s ratios characterising normal strains in the plane of isotropy,  and  

are in-plane and normal shear moduli, respectively, and  is the soil density.  

Using the potential functions, the wave equations for the transversely isotropic medium can be 
expressed as 

 
 

(4)  
 

where , , , , 

 , and  and  are the roots of 

 (Lekhnitskii,1981).  

The displacement and stress boundary conditions can also be expressed in terms Potential functions 
(Shahbodagh, 2008; Shahbodagh et al., 2017). Using the Fourier decomposition with respect to the 
angular coordinate and the Hankel transform with respect to the radial coordinate, the Fourier 
components of the displacement vector can be expressed as 

  (5) 

  (6) 

  (7) 

X Y

2

3

2
3

1Ya
q

a Y
q

¶ ¶
= - -

¶ ¶ ¶
¶ ¶

= - +
¶ ¶ ¶

Xu
r z r

Xv
r z r

22
2 0

1 2
1

(1 )( )
1q
r wa b Y
a

¶
= + Ñ + +

¶ +rw
z

u v w r q z
( )( ) ( )( )2

11 1 / / 1¢ ¢= - + DS S S S SA E E E v v 12 11 662= -A A A

13 /¢= DS SA E v ( )33 1 /¢= - DS SA E v ( )66 / 2 1= + =S S SA E v G ( ) ( )1 11 12 11 12/A A A Aa = + -

44 ¢= SA G 2 44 66/A Aa = ( )3 13 44 66/A A Aa = + ( )( ) ( )( )2 2 2 2 2 2/ 1/ / 1/ /q qÑ = ¶ ¶ + ¶ ¶ + ¶ ¶r r r r r

( )2 11/b a a= + 0 66/S Ar r= 21 2 /S S S Sv E v E¢ ¢D = - - w SE

SE¢ Sv Sv¢

SG SG¢
rS

2
0 0XÑ =

2
2 2 2
1 2 2 0SB

z
YY r w ¶

Ñ Ñ + =
¶

( )( ) ( )2 2 2 2 2 2
01/ / / , 0,1,2q r w µÑ =Ñ + ¶ ¶ + =i r i is z i 0 1µ = 1 2µ a= 2 11µ a= +

( ) ( )2 2
/33 44 11 1 2 2 1 661 / 1/ 1/ / ,µ µ= + - +B A A A s s A 2

0 21/s a= 1s 2s

( )4 2 2
33 44 13 13 44 11 33 11 442 0+ + - + =A A s A A A A A s A A

( )
22

2 0
1 20

2
1 ( )m

m
m mw

d J r d
dz

r wa x x b Y x x
µ

¥
=

æ ö
+ - + +ç ÷

è ø
ò

( ) ( )2 23
1 1 1 10 0
( ) ( ) ( ) ( )

2 2

m
mm

m m m m m m
d iu J r J r d J r J r X d
dz

a Yx x x x x x x x
¥ ¥

+ - + -= - - +ò ò

( ) ( )2 23
1 1 1 10 0

1( ) ( ) ( ) ( )
2 2m

m
mm

m m m m m
i dv J r J r d J r J r X d

dz
a Yx x x x x x x x

¥ ¥

+ - + -= - + - -ò ò



 

1st International Conference on Geomechanics and Geoenvironmental Engineering (iCGMGE 2017) 212 

where  and  are the mth-order Hankel transform of the mth Fourier coefficients of  and , 

respectively, and  is the Bessel function of the first kind of order m. 

 

Figure 2. Influence of pile spacing and excitation frequency on dynamic response of 2×2 pile 
groups: Normalized vertical compliance vs. normalized frequency. (M: Number of piles) 

 
 
The Boussinesq-type distribution specified in Equation (1) is considered to act on the radiation discs. In 
vertical and horizontal loading conditions, this distribution with unit magnitude can, respectively, be 
expressed as 
 

  (8) 

  
 (9) 

Using Equations (5)-(9), the dynamic flexibility matrix of the radiation discs can be obtained for 
different modes of vibration. The dynamic stiffness matrix of the radiation discs defined in Equation (2) 
is derived by inverting the radiation discs flexibility matrix. Similar to finite element analysis, any 
displacement constraints due to pile cap can be applied to the nodal points of the pile elements and 
radiation discs. 

4. NUMERICAL RESULTS 

In this section, the dynamic response of 2×2 pile groups with different spacing ratios, i.e. s/d=2, 5, 10, 
embedded in transversely isotropic half-space is presented. The pile slenderness ratio , the 
density ratio , and the pile stiffness ratio  are assumed in the analysis. The 
material properties adopted for the half-space are =5.0, =2.5, and = =0.25. Figure 2 
shows the normalized vertical compliance of the groups versus the dimensionless frequency 

. For benchmarking, the figures also include the results from a single-pile 
response. It is observed that the response of the pile group is markedly affected by the interaction among 
the piles and strongly depends on the excitation frequency and the pile spacing ratio. The analysis 
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clearly shows that the frequency dependent response of the group cannot be deduced from the study of 
the behaviour of single piles, and a complete treatment of the interaction problem is crucial in pile group 
analysis. However, as the pile spacing increases, the dynamic response of the group approaches the 
single-pile response. 
 
5. CONCLUSIONS 

A new type of elements called radiation discs is introduced to model dynamic pile-soil-pile interaction. 
The pile group system is modelled using beam-column elements, while the radiation elements are 
defined at the nodal points of the elements to model the wave propagation through the medium. A 
Boussinesq-type loading distribution is proposed to act on the radiation elements to achieve the proper 
mode of deformation at the cross sections of piles. Numerical examples are presented and the effects of 
excitation frequency and pile spacing on dynamic compliance of pile groups are investigated. The 
analysis clearly shows that the frequency dependent response of the pile group cannot be deduced from 
the study of the behaviour of single piles, and a complete treatment of the interaction problem is crucial 
in pile group analysis. 
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