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Abstract  

Predicting water flow in partially-saturated soils, using the Richards equation, is important for a range 
of science and engineering problems. Unsaturated material properties, such as the water retention 
curve and the unsaturated hydraulic conductivity function, are usually expensive, time-consuming and 
difficult to measure experimentally. Inverse solutions of the Richards equation offer one alternative to 
experimental determination. However, the doubly-iterative process of inverting a highly non-linear 
partial differential equation such as the Richards equation leads to computationally expensive 
algorithms, and the choice of inverse solvers is critical in developing efficient inverse solution tools.  

The paper assesses the performance of two popular inverse solution algorithms, the Levenberg-
Marquardt Algorithm and Genetic Algorithms, and evaluates their comparative ability to invert the 
Richards equation accurately and efficiently. Tools are built using a forward-solver of the Richards 
equation based on the Finite-Element Method developed at the University of Sydney, and inverse 
algorithms available in Matlab. Using a simple 1D infiltration problem as a case, the inverse solver is 
assessed for a range of values for the difference between number of unknowns and number of 
observation points, as well as different levels of proximity of initial estimate to actual solution. For the 
case studied here, both algorithms generate accurate solutions; however, the Levenberg-Marquardt 
algorithm appears to be more computationally efficient. 

Keywords: Richards Equation, Unsaturated Soils, Water Flow, Inverse Problems 

Introduction 

Predicting water flow in partially-saturated soils is important for a range of science and engineering 
problems, including water quality control, plant and soil science, groundwater protection, design of 
earth dams, foundations design, earth-dam construction and tunnelling, to name a few examples. The 
Richards equation is widely used to model the flow of water in partially-saturated soils. Based on 
Darcy’s constitutive law and a mass conservation statement, it assumes no mass exchange occurs 
between the air and water phases in the soil, but incorporates the dependence of water content and 
hydraulic conductivity on water pressure, through two highly non-linear relationships, known as the 
water retention curve (WRC) and kunsat function, respectively (e.g., Menziani et al., 2007). 

When implemented within inverse solvers, the Richards equation can also be used to determine the 
WRC, the kunsat function and the saturated hydraulic conductivity, i.e., soil material properties that are 
difficult and expensive to determine experimentally. However, inverse solvers of the Richards equation 
are likely to be computationally expensive because of the doubly iterative process involved:  

a) iterations around the non-linearity of the forward solver, due to the dependence, mentioned 
above, of hydraulic conductivity and water content on pore pressure  
and  

b) multiple calls of the forward solver by the inverse solver before reaching the inverse solution.  

Hence, the choice of algorithm for the inverse solver is critical in achieving convergence to the right 
solution while minimizing computational costs. A number of algorithms can be found in the literature 
for computing inverse solutions of non-linear problems (e.g., Haber et al., 2000). One of the most widely 
used techniques is the Levenberg-Marquardt algorithm (LMA), based on non-linear least-square 
optimisation  (More, 1977). When the current iteration is far from the actual solution, the LMA behaves 
as a steepest-descent method with slow but robust convergence. However, as the actual solution is 
approached, the LMA becomes a faster Gauss-Newton algorithm (Lourakis, 2005).  
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More recently, genetic algorithms (GA), mirroring biological principles of natural selection and survival 
of the fittest, have been used to find solutions to inverse problems (Beasley et al., 1993). This family of 
methods assigns a fitness score to an initial ‘population’ of solutions, which is then used to generate a 
new population (‘offspring’) that is better ‘adapted’ to the problem at hand, until a solution of the 
inverse problem is reached. Both the LMA and GAs can be highly efficient and robust but do not always 
lead to the globally optimal solution. Hence, the suitability of either algorithms needs to be assessed for 
the specific problem at hand. Johari et al. (2006) used a GA to derive a formula for predicting water 
content in soils and found it reliable when comparing its predictions to experimental data. However, to 
the best of the authors’ knowledge, no comparison has been made in the literature between the 
performances of the LMA and GAs in inverting a general form of the Richards equation. 

The goal of this paper is to assess the efficiency of a GA in inverting the Richards equation, in 
comparison with the more conventional and widely-used LMA. The two solvers are built using Matlab 
tools as well as a finite-element solver of the Richards equations developed at the University of Sydney. 
The impact of two key factors is assessed a) the number of observation points No minus the number of 
unknowns Nu and b) the degree of proximity of the initial guess to the actual solution. Using a simple 
1D infiltration problem as a based case, the two solvers are compared based on two criteria: a) the 
ability to converge to the right solution, and b) computational time required to achieve a given accuracy.  

Methods 
The 1D Richards equation can be written as follows: 
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where y [L] is the vertical component of a Cartesian coordinate system, t[T] is time, [L3/L3] is the 
volumetric water content of the soil, kyy [L.T-1] is the hydraulic conductivity of the soil and H [L] is the 
total hydraulic head with H=hp + y where hp [L] is the pressure head (assuming the datum plane runs 
through the origin of axes); hp=pw/(rg) where pw [M.L-1.T-2] is the soil negative pore pressure, r [M.L-

3] is the density of water and g [L.T-2] is the gravitational acceleration. Note that q=nS where n is the 
porosity and S is the degree of saturation. The non-linearity of the Richards equation arises from the 
dependence of q and kyy on H (WRC and kunsat function). 

A widely-used WRC, and associated kunsat function, first proposed by van Genuchten (1980), are 
adopted here and can be expressed in terms of pressure head: 

θ = θ- + (θ/ − θ-)S2      (2) 

S2 = 31 + #56
78
)
79
:
;7<

      (3) 

k"" = k/=,>S2 ?1 − #1 − S2
@ 7<A )

7<
B
C
    (4)   

where qr and qs are the residual and saturated volumetric water contents, respectively; Se is the effective 
degree of saturation; ksat [L.T-1] is the hydraulic conductivity at saturation; and p1 [L], p2 and p3 are 
material property parameters with p3=1/(1-p2). Figure 1 shows typical van Genuchten WRC and kunsat 
functions for various soils.  
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Figure 1. WRC and Kunsat van Genuchten functions for various soils; matric potential is the 
negative of pore pressure pw; parameters shown in the table are partly based on Yang & You 

(2013). 

 

CONFEM is a multi-purpose finite-element software for solving a range of water flow and contaminant 
migration problems, in saturated and partially-saturated media (El-Zein and Booker, 1999; El-Zein et 
al., 2005; El-Zein, 2008; El-Zein and Balaam, 2012). The code has been developed over the last decade 
at the University of Sydney along with a graphic interface, Soil Pollution Analysis System (SPAS), for 
building data and viewing results. A new capability for solving hydro-chemical problems in partially 
saturated media, including the Richards equation, has been recently added to the software. The 
algorithm for solving the Richards equation uses an iterative, Crank-Nicolson time-marching scheme. 
In the research reported in this paper, SPAS-CONFEM was used as the forward solver, called from the 
Matlab inversion tool.  

The matlab function ‘ga’, used for the genetic algorithm, requires a user-defined objective function in 
the form of the sum of the squared residuals: 

∑ EdGH/,J − dKGL,JM
CN

JO@       (5) 

where dGH/,J is the value of the observed data, dKGL,J is the value of the SPAS-CONFEM modelled data 
and N is the number of observation data points. Least-square function ‘lsqnonlin’, with option 
‘levenberg-marquardt’, was used for the LMA. The function accepts a user-defined array of the 
residuals, F, and calculates the sum of the residuals, as shown in equations (6) and (7), respectively: 
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The genetic algorithm used here can be classified as a standard genetic algorithm (Beasley et al., 1993). 
Although more complex genetic algorithms may have superior performance (e.g., parallel genetic 

 n qr qs p1 (m) p2 p3 
Clay 0.65 0.158 0.6 10.5 0.646 2.825 
Silt 0.6 0.1 0.581 2.06 0.41 1.695 
Sand 0.4 0.05 0.38 0.45 0.565 2.3 
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algorithms), the aim of the research was to assess widely-available standard procedures (Sivanandam 
and Deepa 2008, pp. 107,).  

Results 
The performance of the algorithms was tested in two stages. In the first stage, the accuracy of the 
forward solver SPAS was evaluated by comparing its predictions to analytical solutions as well as those 
of a commercial water flow software SEEP/W, for a range of problems in 1D, 2D Cartesian and 2D 
axisymmetric. Good agreement was found between SPAS and analytical and numerical predictions. 
This is illustrated by Figure 3 which shows matric potential versus depth (matric potential y=-pw) at 
three different times.  

 

 

 

 

 

 

 

 

 

 

Figure 2. Infiltration Problem Studied 
 

 
Figure 3. Comparison of predictions of SPAS to predictions from SEEP/W (L=1m, hb=-8m, 
ksat=1.16x10-6, n=0.4, qr=0.186, qs=0.383, p1=24m, p2=0.346, p3=1.53). 

In the second stage, the problem shown in Figure 2 was analysed in steady-state, using forward SPAS, 
and pressure heads at selected nodes were used as observation points in subsequent inverse analyses. 
The following parameters were used: L=10m, hb=-20m, ksat=10-8, n=0.45, qr=0.15, qs=0.4, p1=25m, 
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p2=0.6, p3=2.5. Tables 1 and 2 compare the performances of the LMA and GA algorithms. The error at 
each observation point (difference between pressure head from forward and inverse analyses) was 
calculated and both the maximum and average of those errors are shown in Tables 1 and 2. The LMA 
shows excellent accuracy in all cases except when the number of observation points is 2 with two 
unknows to be determined (p1 and p2). The GA algorithm yields results within a few percentages of the 
exact solution, even when only three observation points are available. However, overall, the LMA 
performs better in terms of accuracy and CPU time. Furthermore, it can be seen from Table 2 that, under 
the conditions studied in this paper, the LMA appears to be more robust that the GA when the initial 
guess is made further removed from the exact solution.   

Table 1. Comparison of performances of GA and LMA under different numbers of observation 
points (unknowns are p1 and p2 with initial guesses p1=40m, p2=0.5) 

 Genetic Algorithm 
Levenberg-Marquardt 

Algorithm 

Number of 
Observation 

Points 
Max 

Error 
Average 

Error 

CPU 
Time 
(min) Max Error 

Average 
Error 

CPU 
Time 
(min) 

61 3% 2% 1.96 0% 0% 0.76 
31 7% 5% 3.35 0% 0% 0.86 
21 3% 3% 3.34 0% 0% 0.91 
11 7% 6% 2.26 0% 0% 0.35 
3 9% 8% 3.02 60% 44% 0.74 

 

Table 2. Comparison of Performances of GA and LMA under Different Initial Guesses (31 
observation points, two unknowns p1 and p2; percentage differences between initial guesses and 
exact solution are shown in brackets) 

Initial Guesses Genetic Algorithm 
Levenberg-Marquardt 

Algorithm 

p1 (m) p2 
Max 

Error 
Average 

Error 

CPU 
Time 
(min) Max Error 

Average 
Error 

CPU 
Time 
(min) 

35 (40%) 0.8 (33%) 12% 10% 3.24 0% 0% 0.31 
30 (20%) 0.7 (17%) 24% 24% 5.53 0% 0% 0.52 
25 (0%) 0.6 (0%) 5% 3% 2.79 0% 0% 0.07 

20 (-20%) 
0.5 (-
17%) 5% 4% 4.74 0% 0% 0.35 

15 (-40%) 
0.4 (-
17%) 15% 12% 5.17 32% 28% 0.8 

 

Conclusions 
The paper has assessed the relative merits of two algorithms for inverting the Richards equation. It has 
shown that both algorithms can back-calculate water retention parameters of soils with good accuracy, 
although the LMA performs better in terms of accuracy and CPU time. Observation points from a 
steady-state analysis of one simple infiltration problem for one soil were used for the analyses here. 
However, the findings are must be seen as preliminary and the work needs to be broadened to investigate 
the effects of key parameters in the genetic algorithm (e.g., range, size of initial populations, means of 
generating initial populations), other water flow problems with different boundary conditions, different 
types of soils with different material properties, as well as the effect of using observation points from 
time-dependent analyses rather than steady-state ones.  
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Several attempts have been made in the literature to infer water retention properties of soil from 
infiltration tests in the lab (e.g., Garnier et al., 1997; Bruckler et al., 2002; Schelle et al., 2011; Nasta et 
al., 2011). However, these tests are usually based on boundary conditions that are difficult to maintain 
or measure in the laboratory and their accuracy is sometimes questionable. A useful extension of the 
work reported in this paper is to investigate whether simple infiltration tests with simple boundary 
conditions can be used to back-calculate water retention properties of different types of soils. This work 
is currently in progress.   
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